Universidade Federal do Rio Grande do Norte
Centro de Tecnologia

Departamento de Computacio e Automacao

Algoritmo e Logica de Programaciao

Conceitos de Linguagens de Programacao

DCA 800 — Eng. Quimica

Abril / 2004

1.

1.1

1.2

1.3

LINGUAGENS DE PROGRAMACAO

1.1.1

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

1.3.1
1.3.2

CLASSIFICACAO DAS LINGUAGENS DE PROGRAMACAO
Linguagens de Alto Nivel Comparadas com Linguagens de Baixo Nivel
HISTORICO DAS LINGUAGENS DE PROGRAMACAO
Linguagens de primeira geragdo
Linguagens de Segunda Geragdo
Linguagens de Terceira Geragdo

SUMARIO

Linguagens de qUATta GEFAGAOc.ccocuiciiiiiiiiiieieet e

Linguagens desenvolvidas
Novas diregoes das linguagens de programagdo
Processadores de Linguagens
PROCESSAMENTO DE LINGUAGENS
Interpretagdo

Traducdo

1. LINGUAGENS DE PROGRAMACAO

Linguagens de programacdo sdo usadas para descrever algoritmos; isto €, seqiiéncias de
passos que levam a solu¢do de um problema. Uma linguagem de programagao precisa suportar a
definicdo de agdes e prover meios para especificar operagdes basicas de computacdo, além de
permitir que os usudrios especifiquem como estes passos devem ser seqiienciados para resolver um
problema. Uma linguagem de programacdo pode ser considerada como sendo uma notagdo que
pode ser usada para especificar algoritmos com precisao.

1.1 Classificacdo das Linguagens de Programacio

As linguagens de programagdo podem ser agrupadas em dois grandes grupos: linguagens de
baixo nivel e linguagens de alto nivel.

As linguagens de baixo nivel sdo restritas a linguagem de maquina e tem uma forte relagdo
entre as operagdes implementadas pela linguagem e as operagdes implementadas pelo hardware.

As linguagens de alto nivel por outro lado, aproximam-se das linguagens utilizadas por
humanos para expressar problemas e algoritmos. Cada declaracdo numa linguagem de alto nivel
equivale a varias declara¢des numa linguagem de baixo nivel.

A vantagem principal das linguagens de alto nivel é a abstragdo. Isto é o processo em que as
propriedades essenciais requeridas para a solugdo do problema sdo extraidas enquanto esconde os
detalhes da implementagdo da solucdo adotada pelo programador. Com o nivel de abstracao
aumentado, o programador pode concentrar-se mais na solu¢do do problema ao invés de preocupar-
se como o hardware vai tratar do problema.

No inicio da computacio os programadores eram obrigados a programar usando linguagem
de maquina, que nada mais ¢ do que seqiiéncias de digitos binarios (0s e 1s). Por exemplo, a
instrugdo “incremente o valor no acumulador” deveria ser representada como:

10100100

Ou na melhor hipdtese, escrito sob a forma de um numero hexadecimal

A4

E claro que esta representacio tinha muitas desvantagens:
e Ha uma grande probabilidade de erro em todos os estagios do processo de programagao.

e A programagdo mesmo sendo com algoritmos simples resulta em longos programas, o
que dificulta o processo de validagdo e detecgao de erros.

e O calculo de enderecos de memoéria devem ser feitos manualmente, com um arduo
trabalho e uma grande probabilidade de erros.

Algumas das desvantagens podem ser superadas fazendo com que o computador seja o
responsavel pelo estagio de tradugdo. O programa ainda ¢ escrito em termos de operagdes basicas
de maquina, mas a tradu¢cdo em cddigo bindrio ¢ feita pelo computador. O programa que faz essa
traducdo ¢ chamado de assembler. Até mesmo o mais simples dos assemblers modernos podem

reconhecer enderegamentos simbodlicos e mnemonicos representado operagdes de maquina. Assim,
por exemplo, o programador precisa somente escrever:

ADD ival

Para especificar uma instru¢do para adicionar o conteudo de localizagdo ival para o
acumulador. O assembler entdo faz a tradugdo para a string equivalente de Os e 1s. O assembler
também trata do problema de calculo de endereco, usando nomes em formato de texto para
enderecar os dados. A conseqiiéncia desta automagdo de traducdo € que os programas em
linguagem Assembly sdo muito mais faceis de escrever e depurar que programas em linguagem de
maquina.

1.1.1 Linguagens de Alto Nivel Comparadas com Linguagens de Baixo Nivel

As linguagens de alto nivel podem oferecer muito mais vantagens que as linguagens de
baixo nivel. A principal motivacdo para o uso de linguagens de alto nivel ¢ que os problemas
podem ser solucionados muito mais rapidamente e com muito mais facilidade, pois apresenta um
consideravel numero de tipos de dados definidos, além das facilidades da programagao estruturada.

Os programas em linguagem de alto nivel sdo muito mais faceis de serem desenvolvidos,
entendidos e depurados por diversas razdes:

¢ Elas sao mais provaveis de serem auto-documentadas.

e A estrutura do programa pode ser desenvolvida para refletir a estrutura do problema
original.

e Nomes significativos podem ser escolhidos para variaveis e subprogramas.

e A solucdo do problema ndo necessita ser obscurecida pelo nivel de detalhes necessarios
em um programa em linguagem de baixo nivel.

e O programa em linguagem de alto nivel ¢ normalmente facil de seguir e entender cada
passo da execugao.

e O compilador, nas linguagens de alto nivel, normalmente prové facilidades para a
depuracdo, como visualizacdo dos valores das variaveis, dos registradores e da pilha.
Além disso o compilador pode incluir instru¢des na geragao de cddigo para detectar erros
em tempo de execucdo, como overflow numéricos e violacdo de limites de vetores e
matrizes.

e A utilizagdo de linguagens de baixo nivel ¢ indicada para fungdes que precisam
implementar instrugdes de maquina especificas que ndo sao suportadas por linguagens de
alto nivel, embora a grande maioria das linguagens de alto nivel apresentam uma
biblioteca que permite implementar instru¢des de baixo nivel diretamente em seus
programas.

e A grande eficiéncia e o reduzido tamanho dos programas desenvolvidos em linguagens
de baixo nivel sdo as principais vantagens dessas linguagens.

1.2 Historico das Linguagens de Programacio

Existem centenas de linguagens de programagdo, desenvolvidas desde o inicio da
computacgdo. Essas linguagens foram agrupadas de acordo com suas e caracteristicas e época em
que foram desenvolvidas em 4 geragdes:

1.2.1 Linguagens de primeira geracio

A primeira geracdo de linguagens remonta aos dias da codificagdo em linguagem de
maquina, surgidas com o inicio da computacdo na década de 50, especificamente de 1950 a 1962. A
Linguagem de maquina e Assembly representam esta primeira geracdo das linguagens de
programacao.

Essas linguagens totalmente dependentes da mdaquina, exibem o mais baixo nivel de
abstracdo que uma linguagem pode ser representada.

Essas linguagens somente devem ser usadas quando as linguagens de mais alto nivel ndo
satisfizerem as necessidades ou nao forem suportadas.

1.2.2 Linguagens de Segunda Geracao

A segunda geragdo de linguagens de programacao foi desenvolvida de 1962 a 1974 e serviu
de base para o desenvolvimento das modernas linguagens de programacao.

As carateristicas marcantes das linguagens de segunda geragdo foram o amplo uso com
grande familiaridade e aceitacdo no mercado e a grande quantidade de bibliotecas de software,
permitiram a programac¢ao multi-usudrio, sistemas de execucdo em tempo real e desenvolvimento
de gerenciadores de base de dados.

As linguagens Fortran, Cobol, Algol e algumas extensdes como Basic, foram os
representantes dessa segunda geragao.

Fortran ¢ uma linguagem ainda muito utilizada na area de engenharia e pela comunidade
cientifica. Cobol ¢ uma linguagem que foi aceita e ainda continua em uso para aplicagdes
comerciais. Algol foi o precursor de muitas linguagens de terceira geragdo, por oferecer ricamente
estruturas de controle e tipos de dados. Basic foi uma linguagem originalmente criada para o
aprendizado e teve seu uso bastante reduzido ja na década de 70.

1.2.3 Linguagens de Terceira Geracio

As linguagens de terceira geragdo também chamadas de linguagens de programacao
modernas ou estruturadas, sdo caracterizadas pela grande capacidade procedural e estrutural de seus
dados foram desenvolvidas de 1974 a 1986.

As linguagens de terceira geragdo tiveram como principais caracteristicas a possibilidade de
criar sistemas distribuidos, incorporar recursos mais inteligentes, e exigir um hardware menos
robusto. Podem ser divididas em duas grandes categorias: linguagens de proposito geral e
linguagens especializadas.

As linguagens de proposito gerais foram desenvolvidas baseadas principalmente na
linguagem Algol e servem para uma infinidade de aplicagdes envolvendo desde a area cientifica, até

a area comercial. As linguagens C, Pascal, PL/l1 e Modula-2 s3o as principais linguagens desta
categoria, sendo que as duas primeiras continuam bastante usadas atualmente.

As linguagens especializadas sdo caracterizadas pela forma sintdtica ndo usual com que
foram desenvolvidas para uma aplicagdo distinta. Centenas de linguagens especializadas estdo em
uso atualmente. Dentre as linguagens que encontram aplicagdes na area de engenharia de software
podemos destacar a linguagem Lisp desenvolvida especialmente para manipular simbolos e listas,
Prolog desenvolvida para tratar e representar conhecimentos,. Smalltalk criada para representar os
dados em forma de objetos, sendo a primeira a ser puramente orientada a objetos, APL
desenvolvida para manipular vetores, e a linguagem Forth desenvolvida para desenvolver softwares
para microprocessadores.

1.2.4 Linguagens de quarta geracio

A quarta geracdo das linguagens de programagdo foram desenvolvidas a partir de 1986 ¢
teve como caracteristicas principais a geracao de sistemas especialistas, o desenvolvimento de
inteligéncia artificial e a possibilidade de execu¢do dos programas em paralelo.

No decorrer da histéria temos percebido uma evolucao para uma abstracdo maior na geragao
de programas, usando linguagens de mais alto nivel.

A primeira geracao de linguagens de programacao trabalhavam com um reduzido conjunto
de instru¢des a nivel de maquina. A segunda e terceira geragdo de linguagens de programacao
foram desenvolvidas num nivel que representam os programas computacionais, distinta e
independentemente da arquitetura do processador, mas com completa descri¢do detalhada dos
procedimentos algoritmicos do programa. Com o passar do tempo, as linguagens de quarta geragao
foram desenvolvidas com um nivel de abstracao ainda mais alto.

As linguagens de quarta geracdo, conhecidas também como linguagens artificiais contém
uma sintaxe distinta para representacdo de estruturas de controle e dos dados. Essas linguagens por
combinarem caracteristicas procedurais € ndo procedurais, representam estas estruturas com um alto
nivel de abstracdo, eliminando a necessidade de especificar algoritmicamente esses detalhes.

As linguagens de quarta geracdo podem ser classificadas em trés categorias: linguagens de
consulta, geradoras de programas e outras linguagens (4GL).

As linguagens de consulta foram desenvolvidas para manipular bases de dados, permitindo o
gerenciamento de um grande niimero de informagdes armazenados em arquivos.

As linguagens geradoras de programas representam uma sofisticada classe das linguagens
4GL. Permitem ao usudrio ou programador criar facilmente programas complexos em linguagens de
terceira geracao, utilizando bem menos declaragdes e comandos. Estas linguagens possuem um
nivel bem mais alto que as de terceira geracao.

Enquadradas como outras linguagens de quarta geragdo temos as linguagens usadas em
sistemas de apoio a decisdo, linguagens utilizadas para modelagem de sistemas, linguagens de
prototipagdo, e linguagens de especificagao formal que produzem codigo de maquina.

1.2.5 Linguagens desenvolvidas

No decorrer da histéria da computacio centenas de linguagens foram desenvolvidas. J4 em
1972 haviam mais de 200 linguagens desenvolvidas, sendo que a maioria era para objetivos

6

especificos ou académicos, sendo que dessas apenas 12 podem ser consideradas como importantes e
significativas.

Relagdo das linguagens de programag¢do com o ano em que foram desenvolvidas:

1957 | FORTRAN 1975 | Pascal 1986 | CLP(R)
1958 | ALGOL 1975 | Scheme 1986 | Eiffel
1960 | LISP 1977 | OPS5 1988 | CLOS
1960 | COBOL 1978 | CSP 1988 | Mathematica
1962 | APL 1978 | FP 1988 | Oberon
1962 | SIMULA 1980 | dBasell 1990 | Haskell
1964 | BASIC 1983 | Smalltalk 80 1995 | Delphi
1964 | PL/1 1983 | Ada 1995 | Java
1966 | ISWIM 1983 | Parlog

1970 | Prolog 1984 | Standard ML

1972 | C 1986 | C++

1.2.6 Novas direcoes das linguagens de programacio

As novas diregdes das linguagens de programagao, especialmente das linguagens de quarta
geracdo ¢ a sua aplicagdo com metodologias orientadas a objetos. Essas linguagens sdo baseadas
nos conceitos de objetos, que agrupam comandos de programagdo com dados em objetos que
podem ser usados o tempo todo durante a execugdo do programa, o que ¢ muito util em ambientes
de execucgao paralela.

Outra tendéncia dos ambientes de desenvolvimento de programas ¢ fornecer além das
linguagens de programagdo, um ambiente de geracdo automadtica de codigo, onde o programador
especifica através de ferramentas visuais as caracteristicas do programa e a ferramenta se encarrega
de gerar a codificagdo na linguagem especifica. Estas ferramentas sao muito difundidas na
programac¢do para Windows, e sdo também chamados de RAD (Desenvolvimento Répido de
Aplicativos).

A nova geragdo das linguagens de programagdo, que ja ¢ chamada por muitas pessoas de
quinta geragao, ¢ baseada em métodos de consulta e utilizam comandos escritos em linguagens
naturais, permitindo uma facil comunica¢do com o computador.

1.2.7 Processadores de Linguagens

As linguagens de alto nivel sdo as linguagens que possuem uma certa independéncia da
maquina, pois ndo sdo desenvolvidas utilizando instrugdes especificas do processador (linguagem
de maquina), mas um conjunto de comandos que sdo transformados em linguagens de maquina.

As linguagens de programagdo sdao implementadas por compilagdo de programas em
linguagem de maquina, por interpretagdo das mesmas, ou por alguma combinagdo de compilagdo e
interpretacgdo.

Qualquer sistema para processamento de programas — executando-os ou preparando-os para
a execucdo — ¢ chamado processador de linguagem. Processadores de linguagem incluem
compiladores, interpretadores, e ferramentas auxiliares como editores dirigidos a sintaxe.

1.3 Processamento de Linguagens

Embora seja teoricamente possivel a construcdo de computadores especiais, capazes de
executar programas escritos em uma linguagem de programagdo qualquer, os computadores
existentes hoje em dia s3o capazes de executar somente programas em uma linguagem de nivel
baixo, a linguagem de mdquina. Linguagens de maquina sdo projetadas em fun¢do da rapidez de
execu¢ao de programas, do custo de sua implementacdo e da flexibilidade com que permitem a
construcdo de programas de nivel mais alto. Por outro lado, linguagens de programacdo sao
freqiientemente projetadas em func¢ao da facilidade na construcdo e da confiabilidade de programas.
Um problema basico, entdo, ¢ como uma linguagem de nivel mais alto pode ser implementada em
um computador cuja linguagem de maquina ¢ bastante diferente, e de nivel bem mais baixo.

Existem basicamente duas alternativas para esta implementacao: interpretacao e traducao.

1.3.1 Interpretacio

Nesta solug¢do, as agdes indicadas pelos comandos da linguagem sdo diretamente
executadas. Em geral existe para executar cada acdo possivel um subprograma (escrito na
linguagem de maquina do computador hospedeiro). Assim, a interpretacdo de um programa ¢ feita
pela chamada daqueles subprogramas, em uma seqiiéncia apropriada.

Mais precisamente, um interpretador ¢ um programa que executa repetidamente a seguinte
seqiiéncia:

1. Obter o préximo comando do programa.
2. Determinar que acdes devem ser executadas.
3. Executar estas acoes.

Esta seqiiéncia ¢ bastante semelhante aquela executada por computadores tradicionais, a
saber:

1. Obter a proxima instrucdo (aquela cujo enderego ¢ especificado no indicador de
instrucdes da maquina).

2. Deslocar o indicador de instru¢des (obtendo o endereco da préxima instrugdo a ser
executada).

3. Decodificar a instrugao.

4. Executar a instrugao.

Esta semelhanga mostra que a interpretacdo pode ser encarada como a simulagdo, em um
computador hospedeiro, de uma maquina especial cuja linguagem de maquina ¢ a linguagem de
nivel mais alto.

1.3.2 Traducao

Nesta solug@o, programas escritos em linguagem de alto nivel sdo traduzidos para versdes
equivalentes em linguagem de maquina, antes de serem executados. Esta traducao ¢ feita em varios
passos. Por exemplo, subprogramas podem ser inicialmente traduzidos para cédigo Assembly, este
pode depois ser traduzido para cdodigo relocavel (objeto), em linguagem de maquina; em seguida,
unidades em cddigo relocavel (objeto) podem ser ligadas em uma unica unidade relocavel (um
unico codigo objeto); e, finalmente, o programa inteiro é carregado na memoria principal, como
codigo executavel de maquina. Os tradutores usados em cada um destes passos tem nomes
especiais: compilador, montador, ligador (/inker) e carregador, respectivamente.

Em alguns casos, a maquina onde a tradugdo ¢ feita (a mdquina hospedeira) é diferente
daquela onde o codigo gerado ¢ executado (a maquina objetivo). Neste caso o processo ¢ chamado
tradugdo cruzada. Tradutores cruzados sdo a Unica opg¢ao de tradugcdo quando a maquina objetivo &
muito pequena para conter o tradutor.

A interpretacdo pura e a tradugdo pura sdao dois extremos. Na pratica, muitas linguagens sao
implementadas por uma combinagdo destas técnicas. Um programa pode ser traduzido para um
codigo intermedidrio, que ¢ entdo interpretado. Este cddigo intermediario pode ser simplesmente
uma representagdo formatada do programa-fonte, de onde foi removida informagdo irrelevante
(como comentarios ¢ espacos) ¢ onde os componentes de cada comando estdo armazenados em
formato fixo, de maneira a simplificar a decodificacdo de instrucdes que se segue. Neste caso, a
solugdo ¢ basicamente interpretativa. Alternativamente, o cédigo intermediario poderia ser o codigo
de méquina (de baixo nivel) de uma maquina virtual que seria depois interpretada por programas.
Esta solugdo, que depende mais fortemente de tradugdo, pode ser adotada na geragdo de codigo
portatil, isto ¢, codigo mais facilmente transferivel para outras maquinas do que cdédigo em
linguagem de méquina.

Em uma solucdo puramente interpretativa, a execu¢do de um comando pode requerer um
processo de decodificagdo bastante complicado, para determinar as operagdes a serem executadas e
seus operandos. Na maioria dos casos, a mesma decodificacdo ¢ executada cada vez que o comando
¢ encontrado. Conseqiientemente, se o comando aparece em um trecho de programa executado com
freqliéncia (por exemplo, em uma repeticdo interna), a decodificagdo idéntica afeta sensivelmente a
rapidez de execucao do programa.

Por outro lado, na tradugdo pura, o cédigo de maquina ¢ gerado para cada comando de alto
nivel. Neste caso o tradutor decodifica cada comando somente uma vez. Os componentes usados
com freqiiéncia sdo entdo decodificados, na sua representacdo em linguagem de maquina, varias
vezes; como isto ¢ feito eficientemente por circuitos internos, a tradu¢do pura pode economizar
tempo de execugdo em comparagdo a interpretagdo pura.

Por outro lado, ¢ possivel que a interpretagdo pura economize memoria. Na traducdo pura,
cada comando de alto nivel pode ser traduzido para dezenas ou centenas de instru¢des de maquina.
Em uma solucdo puramente interpretativa, os comandos de alto nivel sdo mantidos em sua forma
original, e as instru¢cdes necessarias a sua execucdo sdao guardadas em um subprograma do
interpretador. A economia de memoria ¢ evidente se o programa ¢ grande e usa a maioria dos
comandos da linguagem. Por outro lado, se todos os subprogramas do interpretador sdo mantidos na
memoria principal durante a execugdo, o interpretador pode desperdicar memoria na execucao de
programas pequenos, que usam somente alguns comandos da linguagem.

